Optoelectronic Manipulation, Assembly, and Patterning of Nanoparticles
نویسندگان
چکیده
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. The synthesis of nanostructures has advanced in the last decade to a point where a vast range of insulating, semiconducting, and metallic materials are available in a variety of forms and shapes such as wires, tubes, ribbons, sheets, and spheres. These nanostructures display exceptional physical properties that can be used to realize novel devices such as high-speed electronics, efficient photovoltaics and thermoelectrics, sensitive chemical and biological sensors, nano-light sources such as lasers and light-emitting diodes, and high-frequency resonators. However, a persistent challenge has been the development of a general strategy for manipulation and heterogeneous integration of individual nanostructures with arbitrary shapes and compositions. Development of such methods is essential in transforming nano-sciences into successful nano-technologies that can ultimately affect the society. Several techniques such as microcontact printing, microfluidics, Langmuir-Blodgett, mechanical nano-manipulators, optical tweezers, and fixed-electrode dielectrophoresis have been developed to address this challenge. However, these techniques either lack the capability to manipulate single nanostructures or are unable to do so in a dynamic and large-scale fashion. Optoelectronic tweezers (OET) has emerged as a powerful tool for massively parallel manipulation of polymer-beads and living cells at micron length-scales via optically-induced dielectrophoresis. By combining the optical and electrical trapping capabilities, OET is able to manipulate particles with much lower optical intensities than optical tweezers and unlike fixed electrode dielectrophoresis, OET is capable of dynamic manipulation of single particles over large areas. In this dissertation, we will first introduce OET as an optofluidic platform and characterize the various electrokinetic forces that can be generated in the OET device. Next, we will use these forces for manipulation, sorting, assembly, and patterning of various nanostructures such as semiconducting and metallic nanowires, carbon nanotubes, and metallic spherical nanocrystals. Though the initial demonstrations of OET were limited to manipulation of microscale objects, 2 here, we will explore the capabilities of OET for manipulation of nanoscale particles, establishing it as an important tool for post-synthesis organization and heterogeneous integration of nanostructures.
منابع مشابه
Dynamic manipulation and patterning of microparticles and cells by using TiOPc-based optoelectronic dielectrophoresis.
We develop light-driven optoelectronic tweezers based on the organic photoconductive material titanium oxide phthalocyanine. These tweezers function based on negative dielectrophoresis (nDEP). The dynamic manipulation of a single microparticle and cell patterning are demonstrated by using this light-driven optoelectronic DEP chip. The adaptive light patterns that drive the optoelectronic DEP on...
متن کاملOptoelectronic Tweezers for Cell and Nanoparticle Manipulation
Optoelectronic tweezers (OET) is a new tool for noninvasive, parallel manipulation of cells and/or micro/nanoparticles. Based on light-induced dielectrophoresis, OET can trap and sort colloidal particles, biological cells, nanowires and nanoparticles using a digital light projector. In this paper, we will present the principle and recent experimental results of OET. Keywords-Optoelectronic twee...
متن کاملOptoelectronic Trapping of Cells, Nanowires, and Nanoparticles
The principle and recent experimental results of optoelectronic tweezers (OET) will be presented. Based on lightinduced dielectrophoresis, OET can trap and sort colloidal particles, biological cells, nanowires and nanoparticles using a digital light projector. ©2009 Optical Society of America OCIS codes: (170.4520) Optical confinement and manipulation; (350.4855) Optical tweezers or optical man...
متن کاملRecent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate
This review presents an up-dated summary of the fundamentals and applications of optoelectronic photovoltaic tweezers for trapping and manipulation of nano-objects on the surface of lithium niobate crystals. It extends the contents of previous reviews to cover new topics and developments which have emerged in recent years and are marking the trends for future research. Regarding the theoretical...
متن کاملOptofluidics and Optoelectronic Tweezers
Optofluidics is the process of integrating the capabilities of optical and fluidic systems to achieve novel functionalities that can benefit from both. Among the novel capabilities that an optical system can bring to the table is the ability to manipulate objects of interest in a liquid media. In the case of biological samples, the objects of interest consist mainly of cells and viruses, wherea...
متن کامل